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Abstract Global Positioning System (GPS) collars are increasingly used to study
animal movement and habitat use. Measurement error is defined as the difference
between the observed and true value being measured. In GPS data measurement error
is referred to as location error and leads to misclassification of observed locations into
habitat types. This is particularily true when studying habitats of small spatial extent
with large amounts of edge, such as linear features (e.g. roads and seismic lines).
However, no consistent framework exists to address the effect of measurement error
on habitat classification of observed locations and resulting biological inference. We
developed a mechanistic, empirically-based method for buffering linear features that
minimizes the underestimation of animal use introduced by GPS measurement error.
To do this we quantified the distribution of measurement error and derived an explicit
formula for buffer radius which incorporated the error distribution, the width of the lin-
ear feature, and a predefined amount of acceptable type I error in location classification.
In our empirical study we found the GPS measurement error of the Lotek GPS_3300
collar followed a bivariate Laplace distribution with parameter ρ = 0.1123. When we
applied our method to a simulated landscape, type I error was reduced by 57%. This
study highlights the need to address the effect of GPS measurement error in animal
location classification, particularily for habitats of small spatial extent.
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1 Introduction

Global Positioning System (GPS) collars are frequently used by ecologists to col-
lect location data for animals moving across a landscape. The data are used to classify
observed animal locations into habitats or to recreate movement paths for the purposes
of testing hypotheses about habitat use, movement, and behaviour. However, GPS data
are subject to error, including biased fix rates (Frair et al. 2004; Cain et al. 2005; D’Eon
and Delparte 2005) and measurement error (D’Eon and Delparte 2005). We focus on
measurement error, which is defined as the difference between the observed and true
value being measured. Measurement error in location data is often referred to as loca-
tion error. To ensure correct biological inference from GPS data, it is necessary to
evaluate and consider measurement error during analysis. For example, if measure-
ment error is ignored, habitat selection patterns may be misinterpreted (Rettie and
McLoughlin 1999; Frair et al. 2004; Visscher 2006), movement distributions miscal-
culated (Jerde and Visscher 2005), or behaviors misunderstood (Hurford 2005).

Measurement error creates a particularly difficult problem for detecting animal use
of habitats of small spatial extent because the area of the habitat is often less than the
measurement error (McLoughlin et al. 2002). Consequently, there is increased proba-
bility an observed location will be classified outside the habitat when the true location
is inside the habitat (type I error), resulting in a bias towards underestimation of habi-
tat use (Rettie and McLoughlin 1999; McLoughlin et al. 2002). Anthropogenic linear
features such as roads, seismic lines, and pipelines, are one example of habitats of
small spatial extent that are ubiquitous in many North American landscapes (Timoney
and Lee 2001). Linear features are known to alter animal distribution, movement, and
behaviour (Thurber et al. 1994; James 1999; Dyer et al. 2001, 2002; Whittington et al.
2005). From a management perspective, unbiased detection of animal use of linear
features is a crucial first step towards increased understanding of when, where, and
how animals use linear features.

One approach for addressing measurement error, commonly used for radio-
telemetry locations, is to buffer observed locations by replacing the point location
with an area of fixed radius (Samuel and Kenow 1992; Nams and Boutin 1991; but
see Saltz 1994). The buffer accounts for the imprecision in the observed location by
assuming the animal is located within an area rather than at an exact point location.
However, there is no consistent method for choosing the buffer radius, leading to
widely varying buffer sizes (e.g., Dickson and Beier 2002; McLoughlin et al. 2002;
Dickson et al. 2005). It is not clear how sensitive the biological conclusions in the
above studies were to the choice of buffer radius, or whether it is reasonable to com-
pare results from studies where different buffer radii were used because the type I
error rate is not available. In addition, the implicit assumption that measurement error
follows a uniform distribution results in valuable information provided by the error
distribution being discarded. For example, Visscher (2006) showed that differences
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between true and measured selection coefficients were larger when GPS measurement
error was assumed to be uniformly distributed than when it followed either a normal or
Laplace distribution. Furthermore, Rettie and McLoughlin (1999) argue that an appro-
priate buffer should depend on landscape structure (i.e., habitat patch size) as well as
distribution of GPS measurement error. This motivated the approach we chose, which
was to buffer the habitat using information from the distribution of GPS measurement
error.

Here we develop a mechanistic, empirically-based method of buffering linear fea-
tures addressing the underestimation bias caused by GPS measurement error. We
illustrate how to select an appropriate buffer radius that accounts for both the mea-
surement error distribution and the width of the linear feature such that bias introduced
by measurement error is minimized. We also show how to test for the robustness of
the buffer against observed location misclassification. Using simulated data we dem-
onstrate the effectiveness of the method for reducing the type I error and illustrate how
considering measurement error changes our inference of linear feature use. While we
focus primarily on the example of linear features, the broad applicability of the method
to other types of habitats of small extent is discussed.

2 Statistical model

2.1 Quantifying the error distribution

The distribution of GPS measurement error describes the probability of observing
a location x̂ = (x̂, ŷ) at a given distance from the true location x = (x, y). The
measurement error ‖x̂ − x‖, which follows a distribution, reflects the precision of
locations obtained by the GPS collar. For example, a leptokurtic measurement error
distribution, such as the Laplace, has a larger number of short and long measurements
than an equivalent normal distribution with the same variance (Kot et al. 1996). We
propose bivariate normal and bivariate Laplace distributions as potential models for
the distribution of GPS measurement error (see Kotz et al. 2001 for a description of
the properties of the bivariate Laplace distribution),

fσ (x̂ | x) = 1

2πσ 2 e− 1
2σ2

(
(x̂−x)2−(ŷ−y)2

)

, (1a)

fρ(x̂ | x) = ρ2

2π
K0

(
ρ

√
(x̂ − x)2 − (ŷ − y)2

)
. (1b)

Here σ and ρ are parameters and K0 is the modified Bessel function of the second
kind (Appendix A). To visualize the two-dimensional distributions in one dimension
we transform to polar coordinates and find the marginal distribution of the radius
r by integrating with respect to θ from 0 to 2π . Following this transformation, the
distributions of the radii are given by
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Fig. 1 (a) Candidate models for the distribution of GPS measurement error. The marginal distribution of
the radii originating from bivariate normal (dashed) and bivariate Laplace (solid) distributions shown with
comparable variances. (b) Histogram of distances between observed and true locations of a GPS collar in
closed conifer forest (Alberta, Canada), including maximum likelihood fits of the candidate models to the
data

fσ (r) = r

σ 2 e− r2

2σ2 , (2a)

fρ(r) = ρ2r K0(ρr). (2b)

These models were chosen because they are flexible and can accommodate a range
of shapes for the error distribution from mesokurtic to leptokurtic (Fig. 1a). We con-
sidered only radially symmetric models because GPS measurement error is not con-
sistently directionally biased (Moen et al. 1996). Model selection techniques are used
to determine which of the two models is the best representation of the observed GPS
measurement error.

2.2 Computing the buffer radius

The best model of the error distribution is used to compute a buffer radius for the
linear features, which reduces the observed location misclassification introduced by
the measurement error. We derive a method for choosing the appropriate buffer radius
in a hypothesis testing framework. The radius is chosen by finding the rejection region
of the test of H0: the true location is somewhere on the linear feature against H1: the
true location is not on the linear feature, where the test statistic is the observed location
x̂. If we consider x to be the distance along a perpendicular line to the original linear
feature and y to be the distance along the linear feature, the long, straight nature of
linear features allows us to reduce to the problem to one dimension by considering
the marginal distribution of x̂ . The distribution of x̂ under the null hypothesis (i.e.
when the true location x is on the linear feature) is given by the general distribution
f�(x̂), where � is a generalized parameter (Appendix B). The amount of acceptable
type I error (α) is specified a priori and corresponds to the proportion of location
estimates classified as off the linear feature when the true location is actually on the
linear feature. The choice of α fixes the position of the rejection region, and thus the
half-width of the buffered linear feature (Fig. 2). The rejection region is found by

123



Environ Ecol Stat (2009) 16:531–546 535

B w 2 0 w 2 B

Observed location x
RR RR

1

Fig. 2 Rejection regions (RR) for testing the null hypothesis that the true location is on the linear feature
against the alternate hypothesis that the true location is not on the linear feature. The test statistic is the
observed location x̂, which follows the distribution f�(x̂ |x), where x is on the linear feature (solid line)
and � is a generalized parameter. The linear feature has width 6.2 m and is shown in grey, while the buffer
is shown in white

solving

∫ B

0
f�(x̂) dx̂ = 1 − α

2
(3)

for the quantity B, which is the half-width of the buffered linear feature.

2.3 Assessing robustness to type I and type II error

The robustness of the observed location classification is evaluated using the power
function β(x) (Appendix C). The power function represents the probability that the
null hypothesis will be rejected for any given true location x, and is particularly useful
because it graphically represents both type I (α) and type II (β) errors simultaneously.
The type I error given by β(x) is different from the type I error specified by α in
Eq. 3 because the hypotheses under consideration are slightly different. Previously
we knew only that the true location was on the linear feature, whereas for β(x) we
know the true location. The types of error can be calculated directly from the graph of
the power function. For a location x on the linear feature, the type I error is β(x). If x
is off the linear feature the type II error is 1 − β(x). Ideally the power function would
be 0 for any x that is on the linear feature and 1 for any x that is off the linear feature.
In other words, for a true location on the linear feature we should never observe a
location estimate off the linear feature, and vice versa. The presence of measurement
error prevents achievement of this ideal, but an appropriate buffer will have a power
function near 0 for all x on the linear feature and close to 1 for all x off the linear
feature (Casella and Berger 2002).
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3 Methods

3.1 Data

Two sets of GPS data were collected in the central east slopes of the Rocky Mountains,
Alberta, Canada (52◦27′ N, 115◦45′ W) using a Lotek GPS_3300 collar (Lotek Wire-
less, Ontario, Canada). We focused solely on the Lotek GPS_3300 collar. The vari-
ability between collar brands, as demonstrated by Hebblewhite et al. (2007), is not
addressed here. To select between candidate models for the distribution of GPS mea-
surement error, location data were collected from a stationary GPS collar placed in
closed conifer forest 1 m off the ground recording location estimates in UTM coor-
dinates at 5-min intervals over 4 days in February 2005 (n =1,422). The law of large
numbers states that if observations are independent, then the sample mean is a con-
sistent estimator for the population mean in the absence of bias (Casella and Berger
2002). We assume there is no directional bias in location estimates (Moen et al. 1996)
and this assumption is supported by visual inspection of the data (Fig. 3), so given the
large sample size we use the mean to estimate the true location.

To assess the performance of the best model for the GPS error distribution, data
were collected from a collar placed at nine consecutive locations along a transect in
closed conifer forest perpendicular to a 6.2 m wide linear feature. Location estimates
were recorded at 5-min intervals for 24 h at the center and edges, as well as 25, 50,
and 75 m on either side of the linear feature. These distances were chosen from esti-
mated standard deviations of GPS collars (D’Eon and Delparte 2005) so as to vary the
amount of overlap between the error distribution and the linear feature.
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Fig. 3 Distribution of the gps measurement error for the Lotek_3500 collar in closed conifer forest. Points
shown are an 8-h subset of the observed locations, with consecutive locations connected by the grey lines
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3.2 Model selection and validation

To determine the best model for the error distribution of the Lotek GPS_3300 collar, the
two candidate models for measurement error distribution were fit to the observed loca-
tion data using maximum likelihood. Maximum likelihood estimate for the parameter
of the bivariate normal distribution is

σ̂ =
√∑n

i=1((x̂i − x)2 + (ŷi − y)2)

2n
. (4)

The maximum likelihood estimate for the bivariate Laplace distribution parameter was
found numerically by maximizing the log-likelihood function,

LL(ρ | x̂) =
n∑

i=1

log

(
ρ2

2π
K0

(
ρ

√
(x̂i − x)2 + (ŷi − y)2

))
, (5)

using the BFGS quasi-Newton (Mathematica 5.1, Wolfram Research, Inc.). In all
likelihood estimates, (x̂i , ŷi ) is the i th observed location, (x, y) is the true location,
and n is the sample size. Confidence intervals for the parameter estimates were con-
structed using the parametric bootstrap (Efron and Tibshirani 1993). The best model
was selected using Akaike Information Criterion (AIC) (Burham and Anderson 1998).

To validate the model, for each transect location we found the proportion of observed
locations on the linear feature and compared this with the proportion predicted by the
model. The relevant measure for calculating the proportion of observed locations pre-
dicted by the model to be on the linear feature, p̂, is the marginal distribution f�(x̂ |x)

of the model f�(x̂|x). The marginal distribution describes the univariate distribution
of x̂ for all values of ŷ. Thus, the proportion of observed locations predicted by the
model to be on the linear feature, for each transect location, is the integral of f�(x̂ |x)

from −w/2 to w/2, where w is the width of the linear feature and x is the transect
location. We compared the model predicted proportions to CIs created using a non-
parametric bootstrap of the observed data (Efron and Tibshirani 1993). It was possible
to do this only for the three central transect locations because all others had fewer
than 25 locations observed on the linear feature (Efron and Tibshirani 1993). We used
Bonferroni adjusted 90% confidence intervals to protect experiment-wide error.

4 Results

4.1 The distribution of measurement error

All collars had fix rates (i.e. proportion of total possible GPS locations successfully
obtained) of greater than 97%. The observed distribution of GPS error was unimo-
dal with several long distance outliers and a mean of 14 m (Fig. 1b). Using AIC, the
bivariate Laplace model was the best representation of the empirical distribution of
GPS measurement error (Table 1). The normal model was not supported by the data,
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Table 1 Results of maximum
likelihood parameter estimation
and model selection for the three
candidate models (Eq. 1a and b).
Confidence intervals (95%) for
the parameters are shown in
brackets

Model Parameter estimates (95% C.I.) �AIC

Bivariate Laplace ρ̂ → 0.1123 (0.1072, 0.1175) 0

Bivariate normal σ̂ → 17.7213 (17.2694, 18.1979) 2617
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Fig. 4 Validation of the bivariate Laplace model for the distribution of GPS measurement error using a
transect across a 6.2 m wide linear feature. Circles represent the probability of the observed location being
on the linear feature predicted by the model. Boxes represent the probability of the observed location being
on the linear feature calculated from the data, shown with 90% Bonferroni adjusted C.I. where possible.
The three central points correspond to true locations on the linear feature

with �AIC of 2617. The marginal distribution of the bivariate Laplace model is a
symmetric Laplace distribution (Kotz et al. 2001). Therefore, the predicted proportion
of locations on the linear feature given the transect location x , is

p̂ =
∫ w/2

−w/2

ρ

2
e−ρ|x̂−x | dx̂ . (6)

The closer the true location was to the center of the linear feature, the greater the
proportion of location estimates observed and predicted to be on the linear feature
(Fig. 4). In all cases the predicted proportion was either within or near (<1%) the
Bonferroni adjusted 90% confidence intervals, indicating that the bivariate Laplace
model is a good representation of the observed GPS error distribution.

4.2 Buffer selection and assessment

Based on the bivariate Laplace model of error distribution, we derived the formula
for the half-width of the buffered linear feature using Eq. 3 and replacing the general
distribution f�(x̂) with fρ(x̂) (see Appendix B). For the case where

∫ w/2
0 fρ(x̂) dx̂ <

(1 − α)/2, meaning less than (1 − α)/2 of the density of the error distribution occurs
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between the center and edge of the linear feature, the half-width of the buffered linear
feature is given by

B = 1

ρ
log

(
2 sinh(wp/2)

αwρ

)
. (7)

Recall ρ is the parameter of the bivariate Laplace distribution and α is the specified
amount of type I error. We give a brief discussion of the behavior or Eq. 7 as each of the
parameters are varied independently. For ρ and w fixed, B decreases logarithmically
to zero as α goes to 1. For a particular error distribution and choice of α, B increases as
the width of the linear feature increases. For small w the rate of increase is quadratic,
but for large w the rate of increase is linear. As ρ increases, meaning the variance of
the error distribution decreases, B decreases exponentially.

For the case when
∫ w/2

0 fρ(x̂) dx̂ ≥ (1 − α)/2, less than α/2 of the density of the
error distribution occurs beyond the edge of the linear feature. Therefore, the prob-
ability of misclassifying an observed location as off the linear feature when the true
location is on the linear feature is already less than or equal to α and buffering is no
longer necessary. This result highlights why GPS measurement error is of particu-
lar importance in the context of narrow habitats, such as linear features. The power
function for assessing the type I and type II errors associated with B is (Appendix C)

β(x) =
⎧
⎨

⎩

1 − eρx sinh(ρB) if x < −B,
e−ρb cosh(ρx) if −B < x < B,
1 − e−ρx sinh(ρB) if x > B.

(8)

5 Example data analysis

In this section we apply our approach using location data simulated with ArcGIS 9
(ESRI) and Mathematica 5.1 (Wolfram Research, Inc.) (Fig. 5). “True” locations were
placed in a 10 km×10 km landscape containing 9 m wide linear features according to
a Poisson process, and constrained so that 250 points fell on the linear features and
750 points fell off the linear features. For each true location, an “observed” location
was generated using the bivariate Laplace error distribution for the Lotek GPS_3300
collar. Buffer selection included four steps. (1) Choice of a priori type I error rate. For
this analysis we selected an α-level of 0.05, which means we are willing to accept a
misclassification of an observed location off the linear feature five times out of 100.
The choice of α will vary depending on the biological question under consideration
and knowledge of the study system. The implications of the choice of α are further
considered in the discussion. (2) Quantification of the error distribution. For this exam-
ple, we used the error distribution obtained from the Lotek GPS_3300 collar, which
followed the bivariate Laplace distribution with parameter ρ = 0.1123. (3) Calcula-
tion of the buffer. From Eq. 7, B = 27 m for a linear feature width of 9 m. B represents
the half-width of the buffered linear feature, so the total width of the buffered linear
feature is 54 m. The buffer calculation must be repeated for each linear feature of
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Fig. 5 Simulated location data for the example analysis. The landscape is 10 km×10 km. “True” locations
were placed in the landscape according to a Poisson process. “Observed” locations were generated under
the assumption of a bivariate Laplace error distribution with parameter ρ = 0.1123
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Fig. 6 The power function β (solid line) of the buffer (location shown by dotted line) chosen for the
example data analysis

different width. (4) Error Assessment. Once the buffer is selected, we graphically as-
sess the robustness of the buffer to classification error by computing the power function
(Eq. 8, Fig. 6). The probability of type I error ranged from 4.8% for true locations
at the centre to 5.5% for true locations near the edge of the linear feature. For true
locations off the linear feature the probability of type II error was high near the edge
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Table 2 Location classification of the example data. Columns 1–4 are the number of points classified as
habitat type i , given that they are truly located in habitat j . Type I error is (off|on)/250 and type II error is
(off|on)/750. Proportion of use is (on|on + on|off)/1000

Classification on|on off|on on|off off|off Type I error Type II error Proportion of use

Truth 250 – – 750 – – 0.25

No buffer 101 149 8 742 0.60 0.01 0.11

Buffer 243 7 56 694 0.03 0.07 0.30

of the linear feature (94.5%), but dropped to 50% at the edge of the buffer (22.5 m
from the edge of the linear feature), and was trivial (< 1%) at 60 m from the edge of
the linear feature.

When the true locations are known we can directly assess the performance of the
buffering method (Table 2). For example, in these example data significant reduction
in type I error caused only a small increase in type II error. The type I error decrease
by 57% while the type II error increased by only 7%. The total number of correctly
classified observed locations (on|on + off|off) increased with the addition of the buffer
from 843 to 937 locations. Therefore, the estimate of the proportion of observed loca-
tions on linear features changed from 0.11 to 0.30, while the true proportion was 0.25.
This particular example highlights both the effectiveness and the limitations of the
buffering method, which are further addressed in the discussion.

6 Discussion

The example data analysis demonstrated that measurement error leads to underesti-
mation of linear feature use. Failure to evaluate and consider GPS measurement error
often interferes with our ability to detect ecological mechanisms (Rettie and McLough-
lin 1999), resulting in poorly informed management decisions. In the introduction we
identified several weaknesses of the current buffering approach. The method for buffer-
ing linear features presented here increases our ability to correct for the bias introduced
by GPS measurement error by addressing these concerns.

The method explicitly includes information about the distribution of GPS mea-
surement error. We found the bivariate Laplace distribution best represented the mea-
surement error of the Lotek GPS_3300 collar in a closed conifer forest (Table 1).
This result differs from previous studies where uniform (Dickson and Beier 2002;
McLoughlin et al. 2002; Conner et al. 2003; Dickson et al. 2005) or normal (Samuel
and Kenow 1992; Jerde and Visscher 2005; Visscher 2006) distributions were assumed
to describe measurement error, but were not validated. Future investigations should
assess if there are differences in kernel shape between different brands of collars to
determine if a particular brand of collar would be better suited for assessing linear fea-
ture use. Because habitat variables affect the distribution of GPS measurement error
(Moen et al. 1996; Frair et al. 2004; Cain et al. 2005), researchers should quantify
error distributions for each collar and habitat type. If habitat type is heterogeneous
within the study area, it may be necessary to use GPS measurement error distributions
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specific to each habitat type. For example, consider a linear feature running partly
through closed conifer (cc) and partly through open deciduous (od). If previous studies
quantifying the measurement error distribution between these habitats found them to
be significantly different (i.e. ρcc �= ρod ), each section of the linear feature would have
a different buffer size. However, habitat-specific distributions will increase the com-
plexity of applying the method and the effect of habitat type on the GPS measurement
error distribution should be investigated before adopting this approach.

The buffer, which directly incorporates habitat structure via the width of the linear
feature and gives the a priori level of type I error, is amenable to error analysis. The
ability to control the type I error permits flexibility in the choice of buffer size depend-
ing on the research question. Recall type I error corresponds to classifying an observed
location outside a habitat when in truth it is inside the habitat. For example, it is often
important for conservation to understand the value of specific corridors (Haddad et al.
2003), animal behaviours associated only with linear features (Dyer et al. 2001), or
predator–prey interactions on linear features (James 1999). Therefore, a researcher
is likely to choose a conservative type I error rate to avoid underestimating linear
feature use.

While our method ensures that observed location classification achieves a specified
level of type I error, there is no direct control of type II error (i.e. classifying a location
as in a habitat, when in truth it is outside of a habitat). Because the level of type II is
not constrained in the method, it may remain constant or increase after the application
of the buffers. The probability of making a type II error depends on the distribution
of animal locations relative to the linear features. For example, if animals are found
either on linear features or quite far away from linear features, buffering is unlikely
to cause a large increase in type II error. However, if the animals are often found off
linear features, but near the edges, then type II error will increase with buffering. In
the latter case, the importance of the edge habitat will be missed and the importance
of the linear feature overestimated. Therefore, buffers may not always lead to better
estimates of habitat use since total error (i.e. the sum of the type I and type II errors)
may increase or decrease.

Two approaches can be used to gain insight into the trade off between type I and type
II error. First, the distribution of animal locations can be used to determine whether
type II error is likely to remain constant or increase significantly after buffering. If
there are relatively few animal locations between the edge of the linear feature and
the edge of the buffer, as compared to the total number of locations, it is unlikely type
II error will increase significantly with buffering. Therefore, it is the local density
of animal locations near the edge of linear features, and not the overall density of
locations in the landscape, that will affect type II error. In the example data analysis,
8% of the locations off linear features were between the edge of the linear feature and
the edge of the buffer. Therefore, we could expect a similar percentage increase in the
type II, which we saw (Table 2). This suggests animal location data should be assessed
before applying the buffering method in order to determine if type II error is likely
to be a significant problem. Second, by inspecting the graph of the power function
(Fig. 6), it is possible to evaluate where the probability of making a type II error
(i.e. 1 − β) becomes small. By visually examining the data and the power function
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researchers can trade off between type I and type II error by varying the chosen value
of α and comparing the corresponding power functions.

To compare our buffering method to traditional approaches we reanalysed the exam-
ple data. We assumed a location error of 31 m 95% of the time (D’Eon et al. 2002) and
applied this as a buffer on the linear features. This buffer had 0 type I error (correctly
classified 250 points on linear features) and a type II error of 0.1 (incorrectly classified
56 points on linear features). The traditional buffer resulted in no type I error, but there
was increased type II error compared to the buffer we proposed. Although the tradi-
tional buffer performed similarly to the buffer we proposed for these example data,
its performance is not guaranteed to remain consistent over different sample sizes. In
addition, because it does not depend on the width of the linear feature, the traditional
buffer remains constant for linear features of different sizes. The buffer proposed here
would adjust, becoming smaller as linear features got wider (see Eq. 7), in order to
appropriately correct for bias introduced by GPS measurement error, which depends
to a large part on the spatial extent of the habitat in which you are trying to detect the
location.

We considered linear features as one example of habitats of small spatial extent,
but the method is more broadly applicable. The generally straight nature of the linear
feature allowed us to reduce the problem from two to one dimensions. For non-linear
habitats of small spatial extent this simplification is inappropriate. In these cases it is
possible to compute B by numerically integrating the error distribution in two spatial
dimensions. In addition, we assumed the location of the linear feature was known
exactly. This is not often the case for real landscapes. Future work should focus on
identifying the effect of measurement error in landscape features, as it is potentially
a significant source of classification error that may compound or dominate the effect
of GPS measurement error in the animal locations.

A focus on GPS measurement error and animal use of linear features is timely.
GPS technology is now commonly used to acquire animal location data, linear fea-
ture densities are likely to increase in the future (Timoney and Lee 2001), and linear
features affect several aspects of animal ecology including movement and survival
(Thurber et al. 1994; James 1999; Dyer et al. 2001, 2002; Whittington et al. 2005).
Although GPS telemetry is more accurate than traditional radio telemetry, access to
more precise location data has stimulated biological inquiry at increasingly finer scales
(Deutsch et al. 1998). As technology advances, it is necessary to acknowledge that
limitations still exist. Rigorous methods for quantifying and addressing measurement
error are needed to ensure biological investigation occurs at an appropriate scale given
the measurement error inherent in the data (Ryan et al. 2004). Empirically justified
buffers correct for GPS measurement error and lead to more accurate, consistent, and
informed inference about animal use of habitats of small spatial extent.
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Appendix A: The modified Bessel function of the second kind

After Abramowitz and Stegun (1972), the modified Bessel function of the second
kind, Kn(x), is one of the solutions to the modified Bessel differential equation. For
the special case where n = 0 it can be written as

K0(x) =
∫ ∞

0

cos(xt)
√

t2 + 1)
dt. (A-1)

Appendix B: The distribution of the observed locations

We derive the distribution of x̂ where x is on the linear feature. Given no prior infor-
mation regarding the distribution of true locations across the linear feature, we assume
a uniform distribution for x such that

φ(x) =
{ 1

w
x ∈ [−w/2, w/2],

0 elsewhere.
(B-1)

If prior information is available indicating that animals prefer using certain regions
of the linear features, such as the edges, the procedure could be adjusted to account
for this by assuming an alternate distribution for x . Using Bayes’ Rule, the marginal
distribution of x̂ is given by

f�(x̂) = 1

w

∫ w/2

−w/2
f�(x̂ | x) dx. (B-2)

Replacing the general error distribution with the Bessel model,

fρ(x̂) =
∫ w/2

−w/2

ρ

2w
e−ρ|x̂−x | dx

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

eρ x̂ sinh( ρw
2 )

w
if x̂ < −w/2,

1−e− ρw
2 cosh(ρ x̂)
w

if −w/2 < x̂ < w/2,
e−ρ x̂ sinh( ρw

2 )
w

if x̂ > w/2,

(B-3)

where the solution is found using a change of variable as in Kot et al. (1996).

Appendix C: Derivation of the power function

Given a buffered linear feature of half-width B, the rejection region (RR) for the
hypothesis test is (−∞,−B] ∪ [B,∞). The power function β(x) is defined to be

123



Environ Ecol Stat (2009) 16:531–546 545

β(x) = Px (x̂ ∈ R R)

=
{

P(type I Error) if x ∈ [−w/2, w/2],
P(1 − type II Error) otherwise

= 1 −
∫ B

−B
f�(x̂ | x) dx̂ . (C-1)

Replacing the general error distribution with the Bessel model and following Kot et al.
(1996),

β(x) = 1 −
∫ B

−B

ρ

2
e−ρ|x̂−x | dx̂

=
⎧
⎨

⎩

1 − eρx sinh(ρB) if x < −B
e−ρb cosh(ρx) if −B < x < B
1 − e−ρx sinh(ρB) if x > B. (C-2)
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